HIGH-ORDER LINEAR AND NON-LINEAR RESIDUAL DISTRIBUTION SCHEMES FOR THE SIMULATION OF COMPRESSIBLE VISCOUS FLOWS

Dante De Santis

Stanford University Aeronautics and Astronautics

AMS Seminar March 26, 2015

BACKGROUND & MOTIVATION CFD AS A COMMON TOOL IN ENGINEERING

Introduction

Today industrial practice

- FV schemes (theoretical) 2nd order accuracy
- Not accurate enough for realistic applications
- Very fine meshes required: CPU expensive calculations
- Simulations of large problems still expensive for fast design & optimization

Introduction

Today industrial practice

- FV schemes (theoretical) 2nd order accuracy
- Not accurate enough for realistic applications
- Very fine meshes required: CPU expensive calculations
- Simulations of large problems still expensive for fast design & optimization

Appeal of high-order methods

- Faster reduction of the discretization error with the DoFs
- Accurate solutions at acceptable costs
- High-fidelity simulations make possible to check deficits of physical modeling

BACKGROUND & MOTIVATION HO METHODS FOR REAL-LIFE APPLICATIONS

- Several high-order schemes developed
 - ENO/WENO
 - Continuous finite elements
 - Discontinuous Galerkin
 - Spectral volume, Spectral difference, Flux reconstruction, . . .

BACKGROUND & MOTIVATION

Introduction

HO METHODS FOR REAL-LIFE APPLICATIONS

- Several high-order schemes developed
 - ENO/WENO
 - Continuous finite elements
 - Discontinuous Galerkin
 - Spectral volume, Spectral difference, Flux reconstruction, ...

ACTIVE RESEARCH FIELD

- Reduce the computational costs
- Reliable discretization of discontinuous solutions
- RD: A possible solution to these limitations

Presentation outline

Introduction

- **1** RD Advection-Diffusion Problems
- 2 Discretization of NS equations
- 3 Discretization of RANS equations
- **1** Conclusions and Perspectives

RESIDUAL DISTRIBUTION SCHEMES THE MAIN IDEA FOR STEADY PROBLEMS

ullet Solve $oldsymbol{
abla} \cdot oldsymbol{f}(u) = 0$, on $\Omega \subset \mathbb{R}^d$

RESIDUAL DISTRIBUTION SCHEMES

The main idea for steady problems

- Solve $\nabla \cdot f(u) = 0$, on $\Omega \subset \mathbb{R}^d$
- Solution approximated on each element with piece-wise continuous polynomials of k-th order: $u \simeq u_h(x)$

$$u_h = \sum_{i \in \mathcal{N}_h} \psi_i(\boldsymbol{x}) \, u_i,$$

RESIDUAL DISTRIBUTION SCHEMES

The main idea for steady problems

- ullet Solve $oldsymbol{
 abla} \cdot oldsymbol{f}(u) = 0$, on $\Omega \subset \mathbb{R}^d$
- Solution approximated on each element with piece-wise continuous polynomials of k-th order: $u \simeq u_h(x)$
- ullet The approximated solution will give birth to a residual: $\Phi^e(u_h)$

$$\Phi^{e}(u_{h}) = \int_{\Omega_{e}} \nabla \cdot \boldsymbol{f}(u_{h}) d\Omega = \int_{\partial \Omega_{e}} \boldsymbol{f}(u_{h}) \cdot \hat{\boldsymbol{n}} d\Omega$$

- ullet Solve $oldsymbol{
 abla} \cdot oldsymbol{f}(u) = 0$, on $\Omega \subset \mathbb{R}^d$
- Solution approximated on each element with piece-wise continuous polynomials of k-th order: $u \simeq u_h(x)$
- ullet The approximated solution will give birth to a residual: $\Phi^e(u_h)$
- Distribution to the DoFs of the element residual

$$\Phi^e_i=eta^e_i\Phi^e \ \sum_{i\in\mathcal{N}^e}\Phi^e_i=\Phi^e$$
 , for conservation

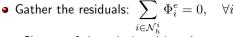
RESIDUAL DISTRIBUTION SCHEMES

The main idea for steady problems

- Solve $\nabla \cdot f(u) = 0$, on $\Omega \subset \mathbb{R}^d$
- Solution approximated on each element with piece-wise continuous polynomials of k-th order: $u \simeq u_h(x)$
- The approximated solution will give birth to a residual: $\Phi^e(u_h)$
- Distribution to the DoFs of the element residual

$$\Phi_i^e = \beta_i^e \Phi^e$$

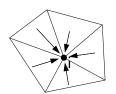
$$\sum_{i \in \mathcal{N}_{\scriptscriptstyle k}^e} \Phi_i^e = \Phi^e$$
 , for conservation



Change of the solution driven by non-zero element residual

$$\frac{u_i^{n+1} - u_i^n}{\Delta t^n} + \sum_{i \in \mathcal{N}_h^i} \Phi_i^e = 0, \ n \to \infty$$





RESIDUAL DISTRIBUTIONS SCHEMES

Some approach for advection-diffusion problems

- Well established methodology for advection problems
- What about the discretization of advection-diffusion problems?

$$\nabla \cdot f(u) = \nabla \cdot (\nu \nabla u), \quad \text{Pe} = ||a|| h/\nu$$

RESIDUAL DISTRIBUTIONS SCHEMES SOME APPROACH FOR ADVECTION-DIFFUSION PROBLEMS

- Well established methodology for advection problems
- What about the discretization of advection-diffusion problems?

$$\nabla \cdot f(u) = \nabla \cdot (\nu \nabla u), \quad \text{Pe} = ||a|| h/\nu$$

- Old approach: mixed RD (for advection) and Galerkin (for diffusion)
 - \bullet Error analysis reveals that the approach is 1st order accurate when $Pe\sim 1$
 - Proper scaling of the RD upwind stabilization with Pe (Ricchiuto et al.)
- New principle [Roe, Nishikawa, Caraeni, ...] one distribution process for the residual of whole equation (advection+diffusion) to get an uniform order of accuracy on entire spectrum of Pe

DISCRETIZATION OF ADVECTION-DIFFUSION PROBLEMS CALCULATION OF THE TOTAL RESIDUAL

• Total residual of the advection-diffusion problem

$$\Phi^e = \int_{\Omega_e} (\nabla \cdot f(u_h) - \nabla \cdot (\nu \nabla u_h)) d\Omega.$$

DISCRETIZATION OF ADVECTION-DIFFUSION PROBLEMS CALCULATION OF THE TOTAL RESIDUAL

• Total residual of the advection-diffusion problem

$$\Phi^e = \int_{\Omega_e} (\nabla \cdot \boldsymbol{f}(u_h) - \nabla \cdot (\nu \nabla u_h)) d\Omega.$$

Using the divergence theorem

$$\Phi^e = \oint_{\partial\Omega_e} \left(\boldsymbol{f}(u_h) - \nu \widetilde{\boldsymbol{\nabla} u_h} \right) \cdot \hat{\boldsymbol{n}} \, \mathrm{d}\partial\Omega,$$

• For a piece-wise polynomial interpolation, $\nabla u^h \cdot n$ is discontinuous at the elements face. The scheme requires a continuous gradient ∇u^h

RD: Distributions process

CENTRAL LINEAR SCHEMES (INSPIRED BY LAX-WENDROFF)

- Originally proposed for multidimensional upwinding
 - Roe, Deconinck, Abgrall ...
 - Formulation on simplexes & difficult extension to HO
- Central schemes: HO & general elements

RD: DISTRIBUTIONS PROCESS

CENTRAL LINEAR SCHEMES (INSPIRED BY LAX-WENDROFF)

- Originally proposed for multidimensional upwinding
 - Roe, Deconinck, Abgrall ...
 - Formulation on simplexes & difficult extension to HO
- Central schemes: HO & general elements

LINEAR-SCHEME

$$\Phi_i^{e,\text{LW}} = \frac{\Phi^e}{N_{\text{dof}}^e} + \int_{\Omega_e} \boldsymbol{a} \cdot \boldsymbol{\nabla} \psi_i \, \tau \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} u_h - \boldsymbol{\nabla} \cdot \left(\nu \, \boldsymbol{\nabla} u^h \right) \right) d\Omega$$

$$\tau = \frac{1}{2} \frac{|\Omega_e|}{\sum_{j \in \mathcal{N}^e} \max(k_j, 0) + \nu}, \quad \text{with} \quad k_j = \frac{1}{2} \, \bar{\boldsymbol{a}} \cdot \boldsymbol{n}_j,$$

- Reconstructed gradient used in the stabilization term
- High-order preserving: $u_h \in \mathbb{P}^k \Rightarrow \text{scheme } \mathcal{O}(h^{k+1})$ (always?)
- Linear scheme: not monotone on shocks

RD: Distributions process

CONSTRUCTION OF A NON-LINEAR RD SCHEME

• First order monotone scheme, e.g. Rusanov's scheme

$$\Phi_i^e = \frac{\Phi^e}{N_{\text{dof}}^e} + \alpha \sum_{j \in \mathcal{N}_h^e} (u_i - u_j), \quad \alpha > 0$$

RD: Distributions process

CONSTRUCTION OF A NON-LINEAR RD SCHEME

• First order monotone scheme, e.g. Rusanov's scheme

$$\Phi_i^e = \frac{\Phi^e}{N_{\text{dof}}^e} + \alpha \sum_{j \in \mathcal{N}_e^e} (u_i - u_j), \quad \alpha > 0$$

• $\beta_i^e=rac{\Phi_i^e}{\Phi^e}$ unbounded. Apply the limiting map $\beta_i^e\mapsto \hat{eta}_i^e(u_h)$

$$\hat{\beta}_i^e(u^h) = \frac{\max(\beta_i^e, 0)}{\sum_{j \in \mathcal{N}_e^e} \max(\beta_j^e, 0)} \quad \Rightarrow \quad \hat{\beta}_i^e \in [0, 1] \quad \& \ \sum_{i \in \mathcal{N}_h^e} \hat{\beta}_i^e = 1$$

• First order monotone scheme, e.g. Rusanov's scheme

$$\Phi_i^e = \frac{\Phi^e}{N_{\text{dof}}^e} + \alpha \sum_{j \in \mathcal{N}_c^e} (u_i - u_j), \quad \alpha > 0$$

ullet $eta_i^e=rac{\Phi_i^e}{\Phi^e}$ unbounded. Apply the limiting map $eta_i^e\mapsto \hat{eta}_i^e(u_h)$

$$\hat{\beta}_i^e(u^h) = \frac{\max(\beta_i^e, 0)}{\sum_{j \in \mathcal{N}_h^e} \max(\beta_j^e, 0)} \quad \Rightarrow \quad \hat{\beta}_i^e \in [0, 1] \quad \& \sum_{i \in \mathcal{N}_h^e} \hat{\beta}_i^e = 1$$

ullet Compute the high order distributed residual: $\hat{\Phi}_i^e = \hat{eta}_i^e(u^h)\Phi^e$

RD: Distributions process

CONSTRUCTION OF A NON-LINEAR RD SCHEME

• First order monotone scheme, e.g. Rusanov's scheme

$$\Phi_i^e = \frac{\Phi^e}{N_{\text{dof}}^e} + \alpha \sum_{j \in \mathcal{N}_e^e} (u_i - u_j), \quad \alpha > 0$$

• $\beta_i^e=rac{\Phi_i^e}{\Phi^e}$ unbounded. Apply the limiting map $\beta_i^e\mapsto \hat{\beta}_i^e(u_h)$

$$\hat{\beta}_i^e(u^h) = \frac{\max(\beta_i^e, 0)}{\sum\limits_{j \in \mathcal{N}_i^e} \max(\beta_j^e, 0)} \quad \Rightarrow \quad \hat{\beta}_i^e \in [0, 1] \quad \& \ \sum_{i \in \mathcal{N}_h^e} \hat{\beta}_i^e = 1$$

- Compute the high order distributed residual: $\hat{\Phi}_i^e = \hat{\beta}_i^e(u^h)\Phi^e$
- Limiting enforces monotonicity but no upwinding included
- The solution consists in adding a filtering term

$$\hat{\Phi}_{i}^{e} = \hat{\beta}_{i}^{e}(u_{h})\Phi^{e} + \epsilon_{h} \int_{\Omega} \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} \psi_{i} - \boldsymbol{\nabla} \cdot \left(\nu \boldsymbol{\nabla} \psi_{i} \right) \right) \tau \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} u_{h} - \boldsymbol{\nabla} \cdot \left(\nu \boldsymbol{\nabla} u_{h} \right) \right) d\Omega$$

SOMETHING IS STILL MISSING

Improvement of viscous term discretization. Inspired by H. Nishikawa

Improve the discretization of diffusion dominated problems

SOMETHING IS STILL MISSING

Improvement of viscous term discretization. Inspired by H. Nishikawa

- Improve the discretization of diffusion dominated problems
- Re-write the scalar equation as a first order system

$$\begin{cases} \nabla \cdot f(u) - \nabla \cdot (\nu q) = 0 \\ q - \nabla u = 0 \end{cases}$$

Something is still missing

Improvement of viscous term discretization. Inspired by H. Nishikawa

- Improve the discretization of diffusion dominated problems
- Re-write the scalar equation as a first order system

$$\left\{ \begin{array}{l} \boldsymbol{\nabla \cdot f(u) - \nabla \cdot (\nu q) = 0} \\ q - \boldsymbol{\nabla u = 0} \end{array} \right.$$

• Discretize the FOS with a central scheme + a streamline stabilization

- Improve the discretization of diffusion dominated problems
- Re-write the scalar equation as a first order system

$$\left\{ \begin{array}{l} \boldsymbol{\nabla \cdot f}(u) - \boldsymbol{\nabla \cdot (\nu q)} = 0 \\ \\ \boldsymbol{q - \nabla u} = 0 \end{array} \right.$$

Discretize the FOS with a central scheme + a streamline stabilization

ullet Replace q_h with $abla \mathtt{u}_h$, the second line is discarded and the problem reads

$$\int_{\Omega_{e}} \psi_{i} \left(\nabla \cdot \boldsymbol{f}(u_{h}) - \nabla \cdot (\nu \widetilde{\nabla u_{h}}) \right) + \int_{\Omega_{e}} \boldsymbol{a} \cdot \nabla \psi_{i} \, \tau_{a} \left(\boldsymbol{a} \cdot \nabla u_{h} - \nabla \cdot \left(\nu \widetilde{\nabla u_{h}} \right) \right) \\
+ \int_{\Omega_{e}} \nu \, \nabla \psi_{i} \cdot \left(\tau_{d} \left(\nabla u_{h} - \widetilde{\nabla u_{h}} \right) \right) = 0$$

FINAL FORM OF THE RD SPACE DISCRETIZATION

LINEAR SCHEME

$$\Phi_{i}^{e,\text{LW}} = \frac{\Phi^{e}}{N_{\text{dof}}^{e}} + \int_{\Omega_{e}} \boldsymbol{a} \cdot \boldsymbol{\nabla} \psi_{i} \, \tau \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} u_{h} - \boldsymbol{\nabla} \cdot \left(\nu \boldsymbol{\nabla} u_{h} \right) \right) d\Omega$$
$$+ \int_{\Omega} \nu \, \boldsymbol{\nabla} \psi_{i} \cdot \left(\boldsymbol{\nabla} u_{h} - \widetilde{\boldsymbol{\nabla} u_{h}} \right) d\Omega,$$

Non-Linear scheme

$$\begin{split} \hat{\Phi}_{i}^{e,\mathrm{Rv}} &= \hat{\beta}_{i}^{e,\mathrm{Rv}}(u_{h}) \, \Phi^{e}(u_{h}) \\ &+ \, \epsilon_{h}^{e}(u_{h}) \int_{\Omega_{e}} \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} \psi_{i} - \boldsymbol{\nabla} \cdot \left(\nu \boldsymbol{\nabla} \psi_{i} \right) \right) \tau \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} u_{h} - \boldsymbol{\nabla} \cdot \left(\nu \boldsymbol{\nabla} u_{h} \right) \right) \mathrm{d}\Omega \\ &+ \int_{\Omega} \nu \, \boldsymbol{\nabla} \psi_{i} \cdot \left(\boldsymbol{\nabla} u_{h} - \widetilde{\boldsymbol{\nabla} u_{h}} \right) \mathrm{d}\Omega, \end{split}$$

THE PROBLEM OF THE GRADIENT RECONSTRUCTION

• The "internal" gradient of the solution is replaced by a continuous approximation

$$oldsymbol{
abla} \mathbf{u}_h \quad \longrightarrow \quad \widetilde{oldsymbol{
abla} \mathbf{u}_h} = \sum_{i \in \mathcal{N}_h^e} \psi_i \widetilde{oldsymbol{
abla} \mathbf{u}_i}$$

ullet ∇u_i is the reconstructed gradient of the solution at the DoF i

THE PROBLEM OF THE GRADIENT RECONSTRUCTION

• The "internal" gradient of the solution is replaced by a continuous approximation

$$\mathbf{\nabla}\mathbf{u}_h \quad \longrightarrow \quad \widetilde{\mathbf{\nabla}}\widetilde{\mathbf{u}}_h = \sum_{i \in \mathcal{N}_h^e} \psi_i \widetilde{\mathbf{\nabla}}\widetilde{\mathbf{u}}_i$$

- ullet $\widetilde{
 abla} u_i$ is the reconstructed gradient of the solution at the DoF i
- High-order preserving scheme
 - With $u_h \in \mathbb{P}^k \Rightarrow (k+1)$ -th accurate scheme for advection problems
 - How accurate the gradient reconstruction must be for advection-diffusion problems? As accurate as the solution

THE PROBLEM OF THE GRADIENT RECONSTRUCTION

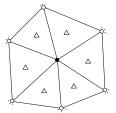
• The "internal" gradient of the solution is replaced by a continuous approximation

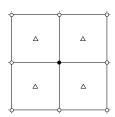
$$\nabla \mathbf{u}_h \quad \longrightarrow \quad \widetilde{\nabla \mathbf{u}}_h = \sum_{i \in \mathcal{N}_h^e} \psi_i \widetilde{\nabla \mathbf{u}}_i$$

- ullet $\widetilde{
 abla}u_i$ is the reconstructed gradient of the solution at the DoF i
- High-order preserving scheme
 - With $u_h \in \mathbb{P}^k \Rightarrow (k+1)$ -th accurate scheme for advection problems
 - How accurate the gradient reconstruction must be for advection-diffusion problems? As accurate as the solution
- Classical gradient reconstruction methods
 - Green-Gauss (area-weighted)
 - L² projection
 - Least-square
- ullet With these approaches $\nabla u_h = \mathcal{O}(h^k)$. One order less than the solution

Super-convergent Patch Recovery (Zienkiewicz & Zhu, 92) The main idea

- Idea coming from mechanical structure: compute stresses with the same accuracy of the displacements. Main idea: use it for CFD
- Gradients at certain points is more accurate than in others
- For structured grids theory identifies Gauss-Legendre points. No formal theory for unstructured grids
- ullet Polynomial interpolation of degree k with a least square fitting to the sampled HO values within a patch of elements.





SUPER-CONVERGENT PATCH RECOVERY METHOD HOW IT WORKS

 For each vertex i of the grid, the components of the of the reconstructed gradient are written in polynomial form

$$\left. \frac{\widetilde{\partial \mathbf{u}^h}}{\partial x} \right|_i = \mathbf{p}^{\mathrm{T}} \mathbf{a}_x, \quad \text{where} \quad \left. \begin{array}{l} \mathbf{p}^{\mathrm{T}} = (1, x, y, x^2, \dots, y^k) \\ \mathbf{a}_x = (a_{x_1}, a_{x_2}, \dots, a_{x_m}) \end{array} \right.$$

SUPER-CONVERGENT PATCH RECOVERY METHOD HOW IT WORKS

 For each vertex i of the grid, the components of the of the reconstructed gradient are written in polynomial form

$$\left. \frac{\widetilde{\partial \mathbf{u}^h}}{\partial x} \right|_i = \mathbf{p}^{\mathrm{T}} \mathbf{a}_x, \quad \text{where} \quad \left. \begin{array}{l} \mathbf{p}^{\mathrm{T}} = (1, x, y, x^2, \dots, y^k) \\ \mathbf{a}_x = (a_{x_1}, a_{x_2}, \dots, a_{x_m}) \end{array} \right.$$

 $\bullet \text{ Minimize respect to } \boldsymbol{a}_x \text{ the function } F_x \!=\! \sum_{j=1}^{N_s} \left(\frac{\partial \mathbf{u}^h}{\partial x} (\boldsymbol{x}_j) - \boldsymbol{p}(\boldsymbol{x}_j)^\mathrm{T} \boldsymbol{a}_x \right)^{\! 2}$

 For each vertex i of the grid, the components of the of the reconstructed gradient are written in polynomial form

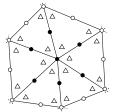
$$\left. \frac{\widetilde{\partial \mathbf{u}^h}}{\partial x} \right|_i = \mathbf{p}^{\mathrm{T}} \mathbf{a}_x, \quad \text{where} \quad \left. \begin{array}{l} \mathbf{p}^{\mathrm{T}} = (1, x, y, x^2, \dots, y^k) \\ \mathbf{a}_x = (a_{x_1}, a_{x_2}, \dots, a_{x_m}) \end{array} \right.$$

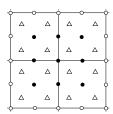
- ullet Solve (in a least square sense) the linear system $A oldsymbol{a}_x = oldsymbol{b}_x^h$, for $oldsymbol{a}_x$

$$A = \begin{pmatrix} 1 & x_1 & y_1 & \dots & y_1^k \\ 1 & x_2 & y_2 & \dots & y_2^k \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N_s} & y_{N_s} & \dots & y_{N_s}^k \end{pmatrix}, \qquad \boldsymbol{b}_x^h = \begin{pmatrix} \partial u^h/\partial x(\boldsymbol{x}_1) \\ \partial u^h/\partial x(\boldsymbol{x}_2) \\ \vdots \\ \partial u^h/\partial x(\boldsymbol{x}_{N_S}) \end{pmatrix}$$

ZZ SUPER-CONVERGENT PATCH RECOVERY METHOD IMPORTANT REMARKS

- The method is very flexible: 2D/3D, hybrid grids
- $A \in \mathbb{R}^{N_S \times m}$, $N_s \ge m$ (N_s sampling points, m polynomial coefficients)
- On the boundary use the interior patch of the nearest vertices
- How to handle high order elements?

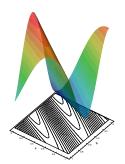


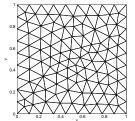


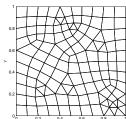
Gradient is reconstructed by evaluating on the patch, at the coordinates of the nodes, the polynomial function constructed for the nearest grid vertex

ZZ SUPER-CONVERGENT PATCH RECOVERY METHOD ACCURACY TEST

Gradient recovery of a smooth solution on unstructured grids

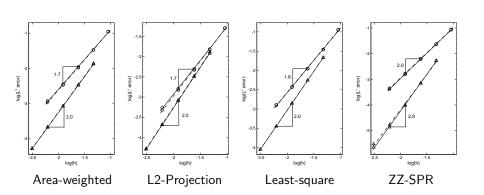






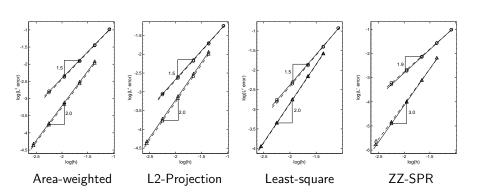
ZZ SUPER-CONVERGENT PATCH RECOVERY METHOD

ACCURACY TEST: TRIANGULAR GRIDS



ZZ-SPR gives gradients with the same order of accuracy of the solution

ZZ SUPER-CONVERGENT PATCH RECOVERY METHOD ACCURACY TEST: HYBRID GRIDS

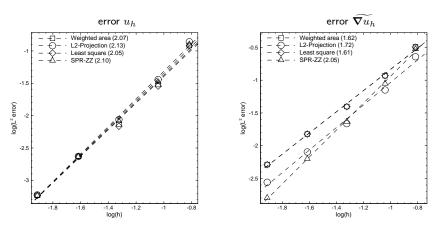


ZZ-SPR gives gradients with the same order of accuracy of the solution

Solve: $\boldsymbol{a} \cdot \boldsymbol{\nabla} u = \nu \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} u$, with $\nu = 0.01$ (Pe ~ 1)

Linear scheme: effect of the gradient reconstruction

ullet Triangular grids and \mathbb{P}^1 elements

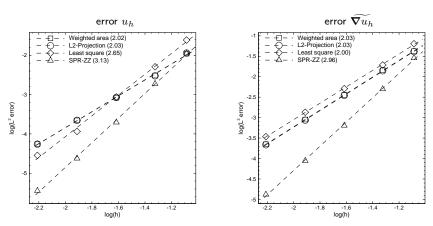


2nd order for solution and gradient with all gradient reconstruction

Solve: $\boldsymbol{a} \cdot \nabla u = \nu \nabla \cdot \nabla u$, with $\nu = 0.01$ (Pe ~ 1)

Linear scheme: effect of the gradient reconstruction

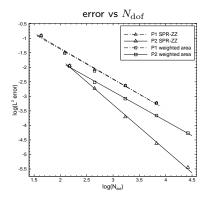
ullet Triangular grids and \mathbb{P}^2 elements

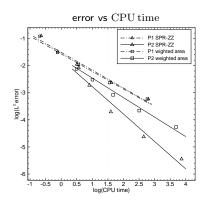


3rd order for solution and gradient only with ZPR-ZZ gradient reconstruction

Solve: $\boldsymbol{a} \cdot \boldsymbol{\nabla} u = \nu \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} u$, with $\nu = 0.01$ (Pe ~ 1)

LINEAR SCHEME: BENEFIT OF HIGH-ORDER APPROXIMATION

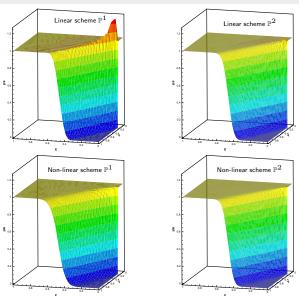




- For u^h error $\simeq 10^{-5}$
 - \mathbb{P}^2 : $N_{\mathrm{dof}} \simeq 12\,000$, and CPU time $\simeq 25min$
 - \mathbb{P}^1 : $N_{\text{dof}} \simeq 31\,000$, and CPU time $\simeq 5h$

DISCONTINUOUS SOLUTION: LINEAR AND NON-LINEAR SCHEMES

$$\boldsymbol{a} \cdot \boldsymbol{\nabla} u = \nu \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} u, \, \boldsymbol{a} = (1/2, \sqrt{3}/2)^{\mathrm{T}}, \, \nu = 10^{-3}$$



GOVERNING EQUATIONS

Compressible Navier-Stokes Equations

$$\nabla \cdot \mathbf{f}^a(\mathbf{u}) - \nabla \cdot \mathbf{f}^v(\mathbf{u}, \nabla \mathbf{u}) = 0$$

$$\mathbf{u} = \begin{pmatrix}
ho \\ m{m} \\ E^t \end{pmatrix}, \quad \mathbf{f}^a = \begin{pmatrix} m{m} \\ m{m} \otimes m{m} \\ (E^t + P) m{m} \\ m{
ho} \end{pmatrix}, \quad \mathbf{f}^v = \begin{pmatrix} 0 \\ \mathbb{S} \\ \mathbb{S} \cdot m{m} \\ m{\rho} + \kappa m{\nabla} T \end{pmatrix}$$

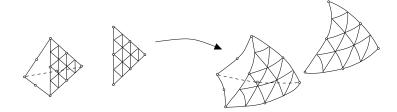
- Viscous flux function homogeneous with the respect to the gradient of the conservative variables: $\mathbf{f}^v(\mathbf{u}, \nabla \mathbf{u}) = \mathbb{K}(\mathbf{u}) \nabla \mathbf{u}$
- Straightforward extension of the numerical schemes to system of equations
- Additional features respect to scalar equations
 - Boundary conditions
 - Implicit scheme

BOUNDARY CONDITIONS BOUNDARY REPRESENTATION

Imposition of the boundary conditions

$$\sum_{e \in \mathcal{E}_{h,i}} \Phi_i^e + \sum_{f \in \mathcal{F}_{h,i}} \Phi_i^{e,\partial} = 0, \quad \forall i \in \mathcal{N}_h,$$

- High-order schemes requires high-order boundary representation
- Here isoparametric formulation used. Same order for solution and geometry
- Piecewise polynomial approximation of the geometry



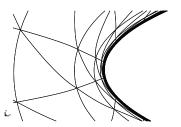
BOUNDARY CONDITIONS BOUNDARY REPRESENTATION

Imposition of the boundary conditions

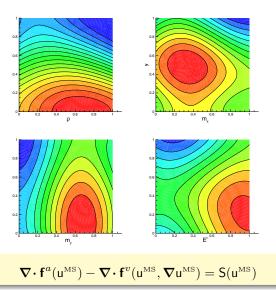
$$\sum_{e \in \mathcal{E}_{h,i}} \Phi_i^e + \sum_{f \in \mathcal{F}_{h,i}} \Phi_i^{e,\partial} = 0, \quad \forall i \in \mathcal{N}_h,$$

- High-order schemes requires high-order boundary representation
- Here isoparametric formulation used. Same order for solution and geometry
- Piecewise polynomial approximation of the geometry



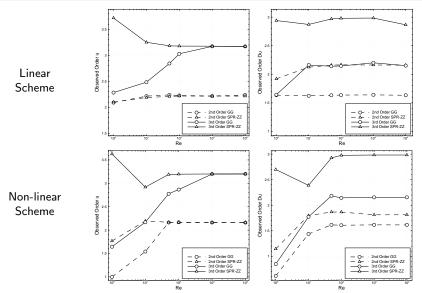


NAVIER-STOKES MANUFACTURED SOLUTIONS DEFINITION OF THE EXACT SOLUTION



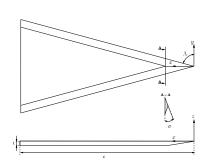
NAVIER-STOKES MANUFACTURED SOLUTIONS

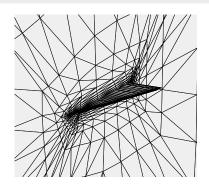
Liner and Non-linear schemes: solution and gradient order of accuracy



Laminar flow around a delta wing

 $M = 0.5, \alpha = 12.5^{\circ}, Re = 4000$

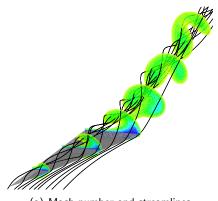




- Separated steady flow at high angle of attack
- Linear scheme with SPR-ZZ gradient reconstruction
- ullet Three levels of nested grids. Parallel simulations: 8, 16, 32 processors
- Boundary conditions: no-slip adiabatic wall, symmetry plane and far-field
- ullet Residual drop $\sim 10^{-10}$, respect to the initial value

Laminar flow around a delta wing

Example of solution and residual on the finest grid



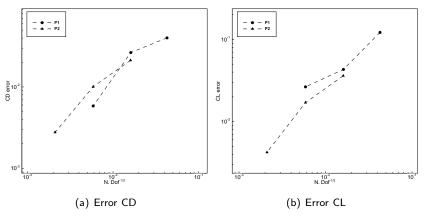
(a) Mach number and streamlines



(b) Residual \mathbb{P}^1 and \mathbb{P}^2

Laminar flow around a delta wing

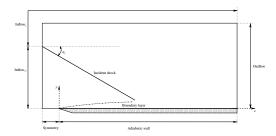
Force coefficients convergence



- Reference values: extrapolated from Higher-order DG resulted
- Effect on the CD of the singularity at the leading edge
- Benefit of high-order approximation on CL

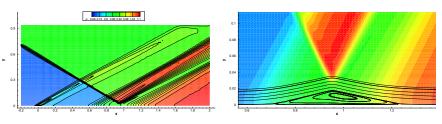
SHOCK-WAVE/LAMINAR BOUNDARY LAYER INTERACTION PROBLEM SPECIFICATIONS

- $M_{\infty} = 2.15$, $\theta_s = 30.8^{\circ}$, $\text{Re}_{LS} = 10^5$
- Non-linear scheme with SPR-ZZ gradient reconstruction
- Grid: $N_x = 90$ (uniform), $N_y = 85$ (clustered to the wall)
- Second and third order simulations
- Residual drop at least $\sim 10^{-8}$ with respect to the initial value



SHOCK-WAVE/LAMINAR BOUNDARY LAYER INTERACTION PROBLEM SPECIFICATIONS

- $M_{\infty} = 2.15$, $\theta_s = 30.8^{\circ}$, $\text{Re}_{\text{LS}} = 10^5$
- Non-linear scheme with SPR-ZZ gradient reconstruction
- Grid: $N_x = 90$ (uniform), $N_y = 85$ (clustered to the wall)
- Second and third order simulations.
- Residual drop at least $\sim 10^{-8}$ with respect to the initial value
- Example of third order solution

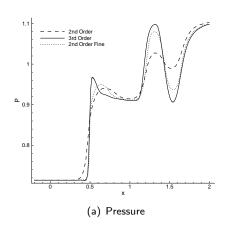


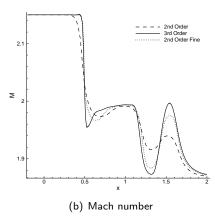
(a) Pressure contours

(b) Recirculation bubble

SHOCK-WAVE/LAMINAR BOUNDARY LAYER INTERACTION COMPARISON BETWEEN SECOND AND THIRD ORDER ACCURATE RESULTS

Profiles at y = 0.29





GOVERNING EQUATIONS

RANS EQUATIONS WITH SPALART-ALLMARAS MODEL

$$\nabla \cdot \mathbf{f}^a(\mathbf{u}) - \nabla \cdot \mathbf{f}^v(\mathbf{u}, \nabla \mathbf{u}) = S(\mathbf{u}, \nabla \mathbf{u})$$

$$\mathbf{u} = \begin{pmatrix} \rho \\ \mathbf{m} \\ E^t \\ \mu_t^{\star} \end{pmatrix}, \quad \mathbf{f}^a = \begin{pmatrix} \mathbf{m} \\ \frac{\mathbf{m} \otimes \mathbf{m}}{\rho} + P \mathbb{I} \\ (E^t + P) \frac{\mathbf{m}}{\rho} \\ \frac{\mathbf{m}}{\rho} \mu_t^{\star} \end{pmatrix}, \quad \mathbf{f}^v = \begin{pmatrix} 0 \\ \mathbb{S} \\ \frac{\mathbf{m}}{\rho} + \kappa \nabla T \\ \frac{\mu + \mu_t^{\star}}{\sigma} \nabla \left(\frac{\mu_t^{\star}}{\rho} \right) \end{pmatrix}$$

- ullet S = $(0, \mathbf{0}, 0, S_{\mathrm{sa}})^{\mathrm{T}}$, $S_{\mathrm{sa}} = \mathcal{P}_{\mathrm{sa}} + \mathcal{E}_{\mathrm{sa}} \mathcal{D}_{\mathrm{sa}}$ Spalart-Allmaras source term
- Fully coupled approach: augmented advective and diffusive flux function
- Discretization with linear and non-linear schemes, similar to Navier-Stokes
- Additional work
 - Modifications to the original SA equation
 - Implicit solver

- Negative values of the turbulent working variable in the outer part of the boundary layer and wakes (insufficient mesh resolution)
- Clipping the eddy viscosity produce a physical valid model

$$\mu_t = \begin{cases} \mu_t^* f_{v1}, & \mu_t^* > 0 \\ 0, & \mu_t^* \le 0 \end{cases}$$

but robustness issues in the numerical solver are still present

- Several modification to the original SA model proposed
 - Not completely satisfying for HO methods

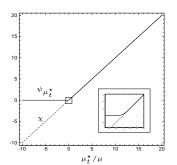
SPALART-ALLMARAS MODEL

Improvement of the robustness (Peraire et al., 2011)

 A robust implementation of the SA equation requires to remove the adverse effects of negative values of μ_t^{\star} on the turbulence model

$$\bullet \ \mu_t^{\star} = \mu \frac{\mu_t^{\star}}{\mu} = \mu \chi$$

$$\mu_t^{\star} = \mu \chi \longrightarrow \mu_t^{\star} = \mu \psi_{\mu_t^{\star}}$$



- The source term and flux functions of the SA equation tend to zero for $\mu_t^{\star} < 0$
- Differentiability of the equation

IMPLICIT SCHEME FOR TURBULENT FLOWS

Non-linear LU-SGS: Y.Sun, Z.J. Wang Y. Liu. 2009

- Jacobian-free approach non robust for HO RANS
- ullet Solve with the symmetric variation of the Gauss-Seidel method with multiple sweeps $(k=1,\ldots,k_{
 m max})$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}_i}{\partial \mathsf{u}_i}\right] \Delta \mathsf{u}_i^{(k+1)} = -\mathsf{R}_i(\mathsf{u}^n) - \sum_{\substack{j \in \Omega_i \\ j \neq i}} \frac{\partial \mathsf{R}_i}{\partial \mathsf{u}_j} \Delta \mathsf{u}_j^{(*)}$$

 $\Delta \mathsf{u}_j^{(*)}$ the most recently updated solution

ullet Linearization of the residual at ${\sf u}^{(*)} = {\sf u}^n + \Delta {\sf u}^{(*)}$

$$\begin{aligned} \mathsf{R}_{i}\big(\mathsf{u}^{(*)}\big) &\approx \mathsf{R}_{i}\big(\mathsf{u}^{n}\big) + \sum_{j \in \Omega_{i}} \frac{\partial \mathsf{R}_{i}}{\partial \mathsf{u}_{j}} \Delta \mathsf{u}_{j}^{(*)} \\ &= \mathsf{R}_{i}\big(\mathsf{u}^{n}\big) + \sum_{\substack{j \in \Omega_{i} \\ j \neq i}} \frac{\partial \mathsf{R}_{i}}{\partial \mathsf{u}_{j}} \Delta \mathsf{u}_{j}^{(*)} + \frac{\partial \mathsf{R}_{i}}{\partial \mathsf{u}_{i}} \Delta \mathsf{u}_{i}^{(*)} \end{aligned}$$

IMPLICIT SCHEME FOR TURBULENT FLOWS Non-linear LU-SGS: Y.Sun, Z.J. Wang Y. Liu. 2009

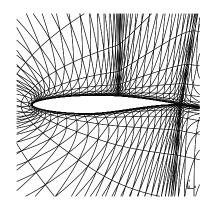
Substituting in the RHS of the SGS scheme

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}_i}{\partial \mathsf{u}_i}\right] \left(\Delta \mathsf{u}_i^{(k+1)} - \Delta \mathsf{u}_i^{(*)}\right) = -\mathsf{R}_i \left(\mathsf{u}^{(*)}\right) + \frac{\Delta \mathsf{u}_i^{(*)}}{\Delta t^n},$$

which is solved with the forward and backward sweeps

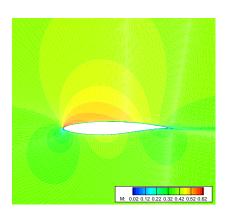
- The RHS is nothing but the residual evaluated at the latest available solutions. (So the algorithm is called non-linear)
- At the beginning of each step the diagonal block of the Jacobian in the LHS is inverted using LU decomposition
- Only diagonal blocks of the approximated Jacobian used

Subsonic and transonic flow over a RAE2822 airfoil

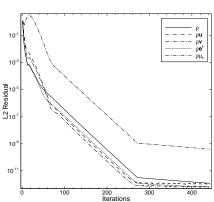


- Re = 6.5×10^6 . $\alpha = 2.79^\circ$
 - M = 0.4 (subsonic)
 - M = 0.734 (transonic)
- SPR-ZZ gradient reconstruction
 - Linear scheme (subsonic)
 - Non-linear scheme (transonic)
- Non-linear LU-SGS implicit scheme
 - Residual drop $\sim 10^{-10}$

SUBSONIC FLOW OVER A RAE2822 AIRFOIL EXAMPLE OF THIRD ORDER RESULTS ON A FINE GRID



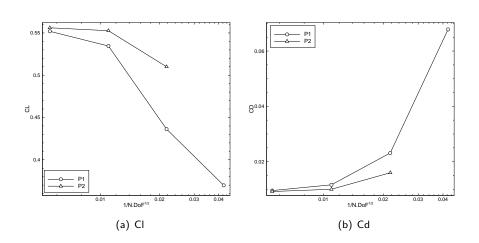
(a) Mach number contours



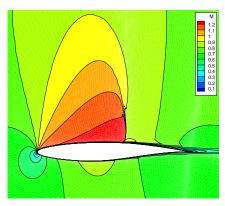
(b) Residual history

Subsonic flow over a RAE2822 Airfoil

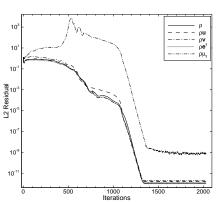
FORCE COEFFICIENT CONVERGENCE



TRANSONIC FLOW OVER A RAE2822 AIRFOIL EXAMPLE OF THIRD ORDER RESULTS ON A FINE GRID



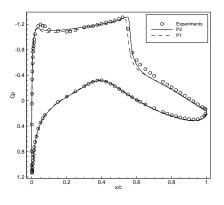
(a) Mach number contours



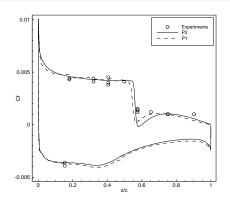
(b) Residual history

Transonic flow over a RAE2822 Airfoil

Comparison second and third order results $(N_{\text{dof}} = 32784)$



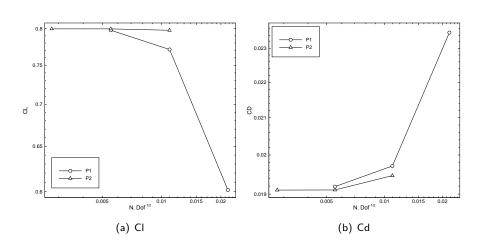
	CI	Cd
RD 3rd ord.	0.7978	0.0192
RD 2nd ord.	0.7712	0.0197



	CI	Cd
DG (UMich)	0.798	0.0191
Exp	0.803	0.0168

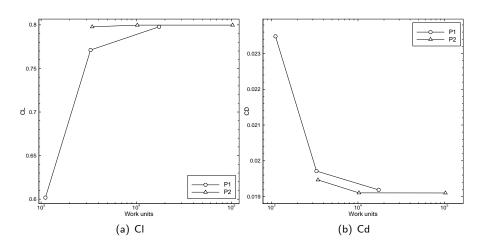
Transonic flow over a RAE2822 airfoil

Force Coefficient Convergence: DoFs

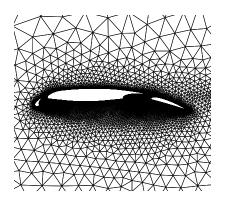


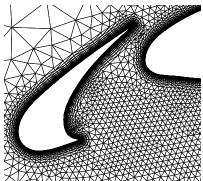
Transonic flow over a RAE2822 airfoil

Force Coefficient Convergence: CPU Time



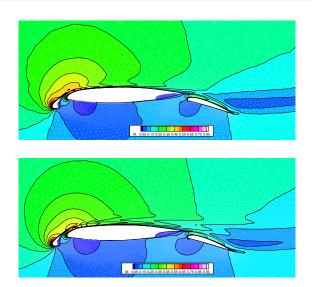
L1T2 HIGH-LIFT MULTI-ELEMENT AIRFOIL $M=0.197,\, \mathrm{Re}=3.52\times 10^6,\, \alpha=20.18^\circ$



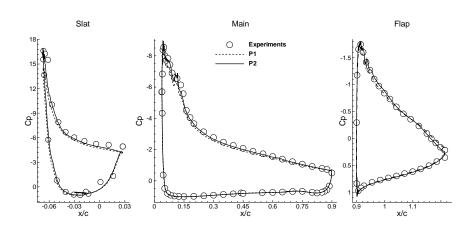


- Unstructured grid of triangles: 33 338 elements
- 2nd and 3rd order computations: linear scheme + SPR-ZZ
- ullet Convergence criterion: normalized L2 residual $\sim 1 \times 10^{-10}$

L1T2 HIGH-LIFT MULTI-ELEMENT AIRFOIL P1 & P2 Mach number contours

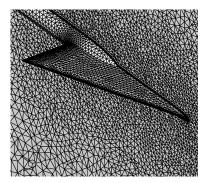


L1T2 HIGH-LIFT MULTI-ELEMENT AIRFOIL P1 & P2 CP AND EXPERIMENTAL DATA

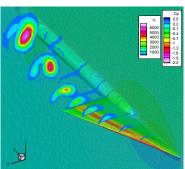


Subsonic flow over the NASA 65° sweep delta wing $M=0.4,~\alpha=13.3^\circ,~\mathrm{Re}=3\times10^6$

- Linear scheme with SPR-77
- Grid of 1145797 tetrahedra
- Residual drop $\sim 10^{-5}$
- Parallel simulations: 96 processors



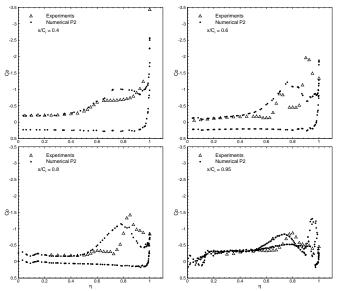
(a) Surface grid



(b) Cp and μ_t contours (third order)

RD Advection-Diffusion Problems Discretization of NS equations Discretization of RANS equations Conclusions and Perspectives

Subsonic flow over the NASA 65° sweep delta wing third order results: Cp on the wing at different spanwise sections



Conclusions & Perspectives

Numerical method

- Idea developed first for advection-diffusion problems
- Based on accurate reconstruction of the gradient
- Possibility to get monotone & accurate solutions

Numerical results

- Extensive evaluation of the numerical solver
- Extension to N-S and RANS equations
- Efficient and robust implicit scheme
- Capabilities of HO approach in solving challenging applications
- Extension to complex EOS and hypersonic flows

Conclusions & Perspectives

Numerical method

- Idea developed first for advection-diffusion problems
- Based on accurate reconstruction of the gradient
- Possibility to get monotone & accurate solutions

Numerical results

- Extensive evaluation of the numerical solver
- Extension to N-S and RANS equations
- Efficient and robust implicit scheme
- Capabilities of HO approach in solving challenging applications
- Extension to complex EOS and hypersonic flows

BIG CHALLENGE

• Unsteady problems: not clear how to get HO

ACKNOWLEDGMENT

- Prof. R. Abgrall (University of Zurich)
- Funded by the European FP7 STREP IDIHOM

Backup slides

IMPROVEMENT OF VISCOUS TERM DISCRETIZATION INSPIRED BY H. NISHIKAWA

• Write the original advection-diffusion problem as a first order system

$$\left\{ \begin{array}{l} \boldsymbol{\nabla \cdot f(u) - \nabla \cdot (\nu q) = 0} \\ \boldsymbol{q - \nabla u = 0} \end{array} \right.$$

Discretize the f.o.s with a central scheme + a streamline stabilization

$$\int_{\Omega_e} \psi_i \left(\begin{matrix} \boldsymbol{\nabla} \boldsymbol{\cdot} \, \boldsymbol{f}(u_h) - \boldsymbol{\nabla} \boldsymbol{\cdot} \, (\nu \boldsymbol{q}_h) \\ \boldsymbol{q}_h - \boldsymbol{\nabla} u_h \end{matrix} \right) + \int_{\Omega_e} \boldsymbol{A} \boldsymbol{\cdot} \boldsymbol{\nabla} \psi_i \, \boldsymbol{\tau} \left(\begin{matrix} \boldsymbol{\nabla} \boldsymbol{\cdot} \, \boldsymbol{f}(u_h) - \boldsymbol{\nabla} \boldsymbol{\cdot} \, (\nu \boldsymbol{q}_h) \\ \boldsymbol{q}_h - \boldsymbol{\nabla} u_h \end{matrix} \right) = 0$$

where

$$\boldsymbol{A} \cdot \boldsymbol{\nabla} \psi_i = \begin{pmatrix} \boldsymbol{a} \cdot \boldsymbol{\nabla} \psi_i & -\nu \frac{\partial \psi_i}{\partial x} & -\nu \frac{\partial \psi_i}{\partial y} \\ -\frac{\partial \psi_i}{\partial x} & 0 & 0 \\ -\frac{\partial \psi_i}{\partial u} & 0 & 0 \end{pmatrix} \quad \text{and} \quad \boldsymbol{\tau} = \begin{pmatrix} \tau_a & 0 & 0 \\ 0 & \tau_a & 0 \\ 0 & 0 & \tau_a \end{pmatrix}$$

FOS SYSTEM

$$\begin{split} \frac{\partial u}{\partial t} + \boldsymbol{a} \cdot \boldsymbol{\nabla} u &= \nu \left(\frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} \right) \\ \frac{\partial p}{\partial t} &= \frac{1}{T_r} \left(\frac{\partial u}{\partial x} - p \right) \\ \frac{\partial q}{\partial t} &= \frac{1}{T_r} \left(\frac{\partial u}{\partial y} - q \right) \\ \frac{\partial \mathbf{u}}{\partial t} + \boldsymbol{A} \cdot \boldsymbol{\nabla} \mathbf{u} &= \mathsf{S}, \end{split}$$

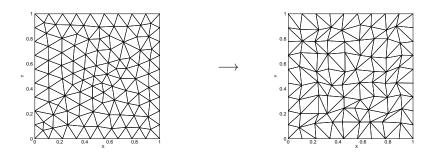
with

$$\mathbf{u} = \begin{pmatrix} u \\ p \\ q \end{pmatrix}, \quad A_x \begin{pmatrix} a_x & -\nu & 0 \\ \frac{1}{T_r} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad A_y \begin{pmatrix} a_y & 0 & -\nu \\ 0 & 0 & 0 \\ \frac{1}{T_r} & 0 & 0 \end{pmatrix}, \quad \mathbf{S} = \begin{pmatrix} 0 \\ -\frac{p}{T_r} \\ -\frac{q}{T_r} \end{pmatrix}$$

Solve: $\boldsymbol{a} \cdot \boldsymbol{\nabla} u = \nu \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} u$, with $\nu = 0.01 \; (\text{Pe} \sim 1)$

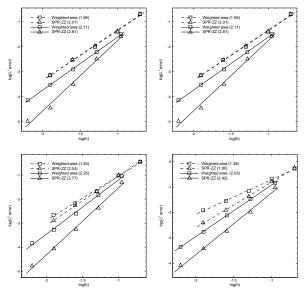
LINEAR SCHEME: BENEFIT OF HIGH-ORDER APPROXIMATION

- Similar results with the non-linear scheme
- Similar results with grids of quadrangles and hybrid elements
- What is the effect of the grid regularity?



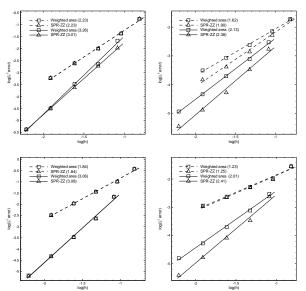
Solve: $\boldsymbol{a} \cdot \nabla u = \nu \nabla \cdot \nabla u$, with $\nu = 0.01$ (Pe ~ 1)

Linear scheme and non-linear scheme on perturbed grid



Solve: $\boldsymbol{a} \cdot \boldsymbol{\nabla} u = \nu \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} u$, with $\nu = 10^{-6} \; (\text{Pe} \gg 1)$

LINEAR SCHEME AND NON-LINEAR SCHEME UNSTRUCTURED GRID

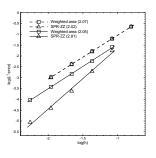


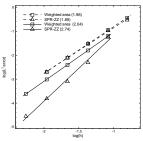
Anisotropic diffusion problem

LINEAR SCHEME AND NON-LINEAR SCHEME UNSTRUCTURED GRID

$$\bullet \ -\nabla \cdot \mathbb{K} \nabla u^h = 0$$

$$\bullet \ \mathbb{K} = \begin{pmatrix} 1 & 0 \\ 0 & \delta \end{pmatrix}, \delta = 10^3$$





RD discretization of system of equations

Calculation of the total residual

$$oldsymbol{\Phi}^e = \int_{\partial\Omega_e} \left(oldsymbol{\mathsf{f}}^aig(oldsymbol{\mathsf{u}}_h ig) - \mathbb{K}(oldsymbol{\mathsf{u}}_h) \widetilde{oldsymbol{
abla}} oldsymbol{\mathsf{u}}_h ig) \cdot \hat{oldsymbol{n}}
ight)$$

 ∇u^h : gradient reconstruction similarly to scalar case

LINEAR SCHEME

$$\begin{split} \boldsymbol{\Phi}_{i}^{e} &= \frac{\boldsymbol{\Phi}^{e}}{N_{\mathrm{dof}}^{e}} + \int_{\Omega_{e}} \!\! \boldsymbol{A} \cdot \boldsymbol{\nabla} \psi_{i} \, \tau \left(\boldsymbol{A} \cdot \boldsymbol{\nabla} \boldsymbol{\mathsf{u}}_{h} - \boldsymbol{\nabla} \cdot (\mathbb{K} \widetilde{\boldsymbol{\nabla}} \boldsymbol{\mathsf{u}}_{h}) \right) \\ &+ \int_{\Omega_{e}} \!\! \mathbb{K} \cdot \boldsymbol{\nabla} \psi_{i} \left((\boldsymbol{\nabla} \boldsymbol{\mathsf{u}}_{h} - \widetilde{\boldsymbol{\nabla}} \boldsymbol{\mathsf{u}}_{h}) \right) \end{split}$$

$$\tau = \frac{|\Omega_e|}{N_{\text{dim}}} \left(\sum_{i \in e} \mathsf{R}_{n_i} \Lambda_{n_i}^+ \mathsf{L}_{n_i} + \mathbb{K}_{jj} \right)^{-1}$$

RD discretization of system of equations

Calculation of the total residual

$$\Phi^e = \int_{\partial\Omega_e} \left(\mathbf{f}^a ig(\mathsf{u}_h ig) - \mathbb{K}(\mathsf{u}_h) \widetilde{m{
abla}m{u}_h} ig) \cdot \hat{m{n}}
ight)$$

 ∇u^h : gradient reconstruction similarly to scalar case

Non-Linear scheme

$$\begin{split} \hat{\Phi}_{i}^{e,\mathrm{Rv}} &= \hat{\Phi}_{i}^{e} + \varepsilon_{h}^{e}(\mathsf{u}_{h}) \int_{\Omega_{e}} \left(\boldsymbol{A} \cdot \boldsymbol{\nabla} \psi_{i} - \mathbb{K} \boldsymbol{\nabla} \psi_{i} \right) \Xi \left(\boldsymbol{A} \cdot \boldsymbol{\nabla} \mathsf{u}_{h} - \boldsymbol{\nabla} \cdot \left(\mathbb{K} \widetilde{\boldsymbol{\nabla} \mathsf{u}_{h}} \right) \right) \mathrm{d}\Omega \\ &+ \int_{\Omega_{e}} \mathbb{K} \boldsymbol{\nabla} \psi_{i} \cdot \left(\boldsymbol{\nabla} \mathsf{u}_{h} - \widetilde{\boldsymbol{\nabla} \mathsf{u}_{h}} \right) \mathrm{d}\Omega \end{split}$$

$$\Xi = \frac{1}{2} |\Omega_e| \left(\sum_{i \in \mathcal{N}_e} \mathsf{R}_{n_i}(\bar{\mathsf{u}}) \, \mathsf{\Lambda}_{n_i}^+(\bar{\mathsf{u}}) \, \mathsf{L}_{n_i}(\bar{\mathsf{u}}) + \sum_{j=1}^{N_{\mathrm{dim}}} \mathsf{K}_{jj}(\bar{\mathsf{u}}) \right)^{-1}.$$

BOUNDARY CONDITIONS

HOW TO IMPOSE BOUNDARY CONDITIONS

• Imposition of weak boundary conditions

$$\sum_{e \in \mathcal{E}_{h,i}} \Phi_i^e + \sum_{f \in \mathcal{F}_{h,i}} \Phi_i^{e,\partial} = 0, \quad \forall i \in \mathcal{N}_h,$$

Boundary residual contribution

$$\Phi_i^{e,\partial} = \int_{\partial\Omega_i \cap \partial\Omega} \psi_i \big(\mathbf{f}(\mathbf{u}^{\partial}) - \mathbf{f}(\mathbf{u}_h) \big) \cdot \boldsymbol{n} \, \, \mathrm{d}\partial\Omega$$

- ullet Correction flux: $ig(\mathbf{f}(\mathsf{u}^\partial) \mathbf{f}(\mathsf{u}_h)ig) \cdot m{n}$
 - $\bullet \ \mathsf{Slip} \ \mathsf{wall:} \ \left(\mathbf{f}^a(\mathsf{u}_{\mathrm{wall}}^{\partial}) \mathbf{f}^a(\mathsf{u}_h)\right) \cdot \hat{\boldsymbol{n}} = -v_n(\rho,\, \rho \boldsymbol{v},\, E^t + P)^{\mathrm{T}}$
 - $\bullet \ \, \mathsf{In}/\mathsf{Out} \ \, \mathsf{flow} \colon \left(\mathbf{f}^a(\mathsf{u}_{\mathrm{in}/\mathrm{out}}^\partial) \mathbf{f}^a(\mathsf{u}^h)\right) \cdot \hat{\boldsymbol{n}} = \mathsf{A}_n^-(\mathsf{u}^h)(\mathsf{u}_{\mathrm{in}/\mathrm{out}}^\partial \mathsf{u}^h)$
 - ullet Adiabatic wall: $m{v}=0$ (strong) and $m{f}^v(m{u}_{\mathrm{wall}}^\partial)=(0,0,0,-\kappa\widetilde{m{
 abla}}T\cdotm{n})^{\mathrm{T}}$

 \bullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}}{\partial \mathsf{u}}(\mathsf{u}_h^n)\right] \Delta \mathsf{u}^n = -\mathsf{R}(\mathsf{u}_h^n), \quad \Delta \mathsf{u}^n \equiv \mathsf{u}^{n+1} - \mathsf{u}^n$$

 \bullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}}{\partial \mathsf{u}}(\mathsf{u}_h^n)\right] \Delta \mathsf{u}^n = -\mathsf{R}(\mathsf{u}_h^n), \quad \Delta \mathsf{u}^n \equiv \mathsf{u}^{n+1} - \mathsf{u}^n$$

• Approximated solution $\|R(u_h^n) + A(u_h^n)\Delta u_h^n\| \le \eta_h^n \|R(u_h^n)\|$ with GMRES

 \bullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right] \Delta \mathbf{u}^n = -\mathbf{R}(\mathbf{u}_h^n), \quad \Delta \mathbf{u}^n \equiv \mathbf{u}^{n+1} - \mathbf{u}^n$$

- Approximated solution $\|\mathsf{R}(\mathsf{u}_h^n) + A(\mathsf{u}_h^n)\Delta\mathsf{u}_h^n\| \leq \eta_h^n \|\mathsf{R}(\mathsf{u}_h^n)\|$ with GMRES
- Impossible to compute the analytical Jacobian: poor iterative convergence

IMPLICIT TIME INTEGRATION

INEXACT NEWTON-KRYLOV METHODS

 \bullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right] \Delta \mathbf{u}^n = -\mathbf{R}(\mathbf{u}_h^n), \quad \Delta \mathbf{u}^n \equiv \mathbf{u}^{n+1} - \mathbf{u}^n$$

• Approximated solution $\|\mathsf{R}(\mathsf{u}_h^n) + A(\mathsf{u}_h^n)\Delta\mathsf{u}_h^n\| \leq \eta_h^n \|\mathsf{R}(\mathsf{u}_h^n)\|$ with GMRES

Jacobian-free

$$A \mathbf{w} = \left(\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right) \mathbf{w}$$

IMPLICIT TIME INTEGRATION

INEXACT NEWTON-KRYLOV METHODS

 \bullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right] \Delta \mathbf{u}^n = -\mathbf{R}(\mathbf{u}_h^n), \quad \Delta \mathbf{u}^n \equiv \mathbf{u}^{n+1} - \mathbf{u}^n$$

• Approximated solution $\|\mathsf{R}(\mathsf{u}_h^n) + A(\mathsf{u}_h^n)\Delta\mathsf{u}_h^n\| \leq \eta_h^n \|\mathsf{R}(\mathsf{u}_h^n)\|$ with GMRES

Jacobian-free

$$\begin{split} A\mathbf{w} &= \left(\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right)\mathbf{w} \\ &\simeq & \frac{\mathbb{I}}{\Delta t^n}\mathbf{w} + \frac{\mathbf{R}(\mathbf{u}_h^n + \epsilon \mathbf{w}) - \mathbf{R}(\mathbf{u}_h^n)}{\epsilon} \end{split}$$

IMPLICIT TIME INTEGRATION

INEXACT NEWTON-KRYLOV METHODS

 \bullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}}{\partial \mathsf{u}}(\mathsf{u}_h^n)\right] \Delta \mathsf{u}^n = -\mathsf{R}(\mathsf{u}_h^n), \quad \Delta \mathsf{u}^n \equiv \mathsf{u}^{n+1} - \mathsf{u}^n$$

• Approximated solution $\|\mathsf{R}(\mathsf{u}_h^n) + A(\mathsf{u}_h^n)\Delta\mathsf{u}_h^n\| \leq \eta_h^n \|\mathsf{R}(\mathsf{u}_h^n)\|$ with GMRES

Jacobian-free

$$\begin{split} A \mathbf{w} &= \left(\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right) \mathbf{w} \\ &\simeq \frac{\mathbb{I}}{\Delta t^n} \mathbf{w} + \frac{\mathbf{R}(\mathbf{u}_h^n + \epsilon \mathbf{w}) - \mathbf{R}(\mathbf{u}_h^n)}{\epsilon} \\ &\epsilon = \frac{\sqrt{1 + \|\mathbf{u}\|_{L_2}}}{\|\mathbf{w}\|_{L_2}} \epsilon_{\mathrm{rel}}, \quad \epsilon_{\mathrm{rel}} = 10^{-8} \end{split}$$

ullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}}{\partial \mathsf{u}}(\mathsf{u}_h^n)\right] \Delta \mathsf{u}^n = -\mathsf{R}(\mathsf{u}_h^n), \quad \Delta \mathsf{u}^n \equiv \mathsf{u}^{n+1} - \mathsf{u}^n$$

 $\bullet \ \, \mathsf{Approximated} \ \, \mathsf{solution} \ \, \|\mathsf{R}(\mathsf{u}_h^n) + A(\mathsf{u}_h^n)\Delta\mathsf{u}_h^n\| \leq \eta_h^n\|\mathsf{R}(\mathsf{u}_h^n)\| \ \, \mathsf{with} \ \, \mathsf{GMRES}$

JACOBIAN-FREE

$$\begin{split} A\mathbf{w} &= \left(\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right)\mathbf{w} \\ &\simeq \frac{\mathbb{I}}{\Delta t^n}\mathbf{w} + \frac{\mathbf{R}(\mathbf{u}_h^n + \epsilon \mathbf{w}) - \mathbf{R}(\mathbf{u}_h^n)}{\epsilon} \\ &\epsilon = \frac{\sqrt{1 + \|\mathbf{u}\|_{L_2}}}{\|\mathbf{w}\|_{L_2}} \epsilon_{\mathrm{rel}}, \quad \epsilon_{\mathrm{rel}} = 10^{-8} \end{split}$$

$\overline{\text{Preconditioning: } AP^{-1}Px = b}$

$$AP^{-1}w = b$$
 and $x = P^{-1}w$

 \bullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}}{\partial \mathsf{u}}(\mathsf{u}_h^n)\right] \Delta \mathsf{u}^n = -\mathsf{R}(\mathsf{u}_h^n), \quad \Delta \mathsf{u}^n \equiv \mathsf{u}^{n+1} - \mathsf{u}^n$$

• Approximated solution $\|\mathsf{R}(\mathsf{u}_h^n) + A(\mathsf{u}_h^n)\Delta\mathsf{u}_h^n\| \leq \eta_h^n \|\mathsf{R}(\mathsf{u}_h^n)\|$ with GMRES

JACOBIAN-FREE

$$\begin{split} A\mathbf{w} &= \left(\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right) \mathbf{w} \\ &\simeq \frac{\mathbb{I}}{\Delta t^n} \mathbf{w} + \frac{\mathbf{R}(\mathbf{u}_h^n + \epsilon \mathbf{w}) - \mathbf{R}(\mathbf{u}_h^n)}{\epsilon} \\ &\epsilon = \frac{\sqrt{1 + \|\mathbf{u}\|_{L_2}}}{\|\mathbf{w}\|_{L_2}} \epsilon_{\mathrm{rel}}, \quad \epsilon_{\mathrm{rel}} = 10^{-8} \end{split}$$

PRECONDITIONING: $AP^{-1}Px = b$

$$AP^{-1}w = b$$
 and $x = P^{-1}w$

$$(D+L)D^{-1}(D+U)x = b + (LD^{-1}U)x$$

 \bullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}}{\partial \mathsf{u}}(\mathsf{u}_h^n)\right] \Delta \mathsf{u}^n = -\mathsf{R}(\mathsf{u}_h^n), \quad \Delta \mathsf{u}^n \equiv \mathsf{u}^{n+1} - \mathsf{u}^n$$

 $\bullet \ \, \mathsf{Approximated} \ \, \mathsf{solution} \ \, \|\mathsf{R}(\mathsf{u}_h^n) + A(\mathsf{u}_h^n)\Delta\mathsf{u}_h^n\| \leq \eta_h^n\|\mathsf{R}(\mathsf{u}_h^n)\| \ \, \mathsf{with} \ \, \mathsf{GMRES}$

JACOBIAN-FREE

$$\begin{split} A\mathbf{w} &= \left(\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right) \mathbf{w} \\ &\simeq \frac{\mathbb{I}}{\Delta t^n} \mathbf{w} + \frac{\mathbf{R}(\mathbf{u}_h^n + \epsilon \mathbf{w}) - \mathbf{R}(\mathbf{u}_h^n)}{\epsilon} \\ &\epsilon = \frac{\sqrt{1 + \|\mathbf{u}\|_{L_2}}}{\|\mathbf{w}\|_{L_2}} \epsilon_{\mathrm{rel}}, \quad \epsilon_{\mathrm{rel}} = 10^{-8} \end{split}$$

PRECONDITIONING: $AP^{-1}Px = b$

$$AP^{-1}w = b$$
 and $x = P^{-1}w$

$$(D+L)D^{-1}(D+U)\,x=b+\underline{(LD^{-1}U)x}$$

 \bullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}}{\partial \mathsf{u}}(\mathsf{u}_h^n)\right] \Delta \mathsf{u}^n = -\mathsf{R}(\mathsf{u}_h^n), \quad \Delta \mathsf{u}^n \equiv \mathsf{u}^{n+1} - \mathsf{u}^n$$

 $\bullet \ \, \mathsf{Approximated} \ \, \mathsf{solution} \ \, \|\mathsf{R}(\mathsf{u}_h^n) + A(\mathsf{u}_h^n)\Delta\mathsf{u}_h^n\| \leq \eta_h^n\|\mathsf{R}(\mathsf{u}_h^n)\| \ \, \mathsf{with} \ \, \mathsf{GMRES}$

JACOBIAN-FREE

$$\begin{split} A\mathbf{w} &= \left(\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right) \mathbf{w} \\ &\simeq \frac{\mathbb{I}}{\Delta t^n} \mathbf{w} + \frac{\mathbf{R}(\mathbf{u}_h^n + \epsilon \mathbf{w}) - \mathbf{R}(\mathbf{u}_h^n)}{\epsilon} \\ &\epsilon = \frac{\sqrt{1 + \|\mathbf{u}\|_{L_2}}}{\|\mathbf{w}\|_{L_2}} \epsilon_{\mathrm{rel}}, \quad \epsilon_{\mathrm{rel}} = 10^{-8} \end{split}$$

PRECONDITIONING: $AP^{-1}Px = b$

$$AP^{-1}w = b$$
 and $x = P^{-1}w$

$$\underbrace{(D+L)D^{-1}(D+U)}_{P}x = b + \underbrace{(LD^{-1}U)x}_{P}$$

 \bullet Implicit Euler scheme with linearization: $A(\mathbf{u}_h^n)\Delta\mathbf{u}_h^n=-\mathsf{R}(\mathbf{u}_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}}{\partial \mathsf{u}}(\mathsf{u}_h^n)\right] \Delta \mathsf{u}^n = -\mathsf{R}(\mathsf{u}_h^n), \quad \Delta \mathsf{u}^n \equiv \mathsf{u}^{n+1} - \mathsf{u}^n$$

 $\bullet \ \, \mathsf{Approximated} \ \, \mathsf{solution} \ \, \|\mathsf{R}(\mathsf{u}_h^n) + A(\mathsf{u}_h^n)\Delta\mathsf{u}_h^n\| \leq \eta_h^n\|\mathsf{R}(\mathsf{u}_h^n)\| \ \, \mathsf{with} \ \, \mathsf{GMRES}$

JACOBIAN-FREE

$$\begin{split} A\mathbf{w} &= \left(\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right)\mathbf{w} \\ &\simeq \frac{\mathbb{I}}{\Delta t^n}\mathbf{w} + \frac{\mathbf{R}(\mathbf{u}_h^n + \epsilon \mathbf{w}) - \mathbf{R}(\mathbf{u}_h^n)}{\epsilon} \\ &\epsilon = \frac{\sqrt{1 + \|\mathbf{u}\|_{L_2}}}{\|\mathbf{w}\|_{L_1}} \epsilon_{\mathrm{rel}}, \quad \epsilon_{\mathrm{rel}} = 10^{-8} \end{split}$$

PRECONDITIONING: $AP^{-1}Px = b$

$$AP^{-1}\mathbf{w} = b$$
 and $x = P^{-1}\mathbf{w}$

$$P = (D+L)D^{-1}(D+U)$$

• Implicit Euler scheme with linearization: $A(u_h^n)\Delta u_h^n = -R(u_h^n)$

$$\left[\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathsf{R}}{\partial \mathsf{u}}(\mathsf{u}_h^n)\right] \Delta \mathsf{u}^n = -\mathsf{R}(\mathsf{u}_h^n), \quad \Delta \mathsf{u}^n \equiv \mathsf{u}^{n+1} - \mathsf{u}^n$$

• Approximated solution $\|R(u_h^n) + A(u_h^n)\Delta u_h^n\| \le \eta_h^n \|R(u_h^n)\|$ with GMRES

Jacobian-free

$$A\mathbf{w} = \left(\frac{\mathbb{I}}{\Delta t^n} + \frac{\partial \mathbf{R}}{\partial \mathbf{u}}(\mathbf{u}_h^n)\right) \mathbf{w}$$

$$\simeq \frac{\mathbb{I}}{\Delta t^n} \mathbf{w} + \frac{\mathbf{R}(\mathbf{u}_h^n + \epsilon \mathbf{w}) - \mathbf{R}(\mathbf{u}_h^n)}{\epsilon}$$

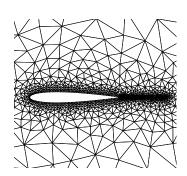
$$\epsilon = \frac{\sqrt{1 + \|\mathbf{u}\|_{L_2}}}{\|\mathbf{w}\|_{L_2}} \epsilon_{\text{rel}}, \quad \epsilon_{\text{rel}} = 10^{-8}$$

PRECONDITIONING: $AP^{-1}Px = b$

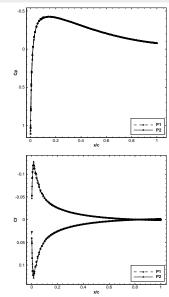
$$AP^{-1}w = b$$
 and $x = P^{-1}w$

$$\begin{aligned} \mathsf{A}\mathsf{W} &= \left(\frac{1}{\Delta t^n} + \frac{1}{\partial \mathsf{u}}(\mathsf{u}_h)\right) \mathsf{W} \\ &\simeq \frac{\mathbb{I}}{\Delta t^n} \mathsf{w} + \frac{\mathsf{R}(\mathsf{u}_h^n + \epsilon \mathsf{w}) - \mathsf{R}(\mathsf{u}_h^n)}{\epsilon} \\ &\epsilon &= \frac{\sqrt{1 + \|\mathsf{u}\|_{L_2}}}{\|\mathsf{w}\|_{L_2}} \epsilon_{\mathrm{rel}}, \quad \epsilon_{\mathrm{rel}} = 10^{-8} \end{aligned} \qquad \begin{cases} P &= (D + L)D^{-1}(D + U) \\ \left\{x_i^\star = D_i^{-1}\left(\mathsf{w}_i - \sum_{j < i} \mathsf{w}_j \, x_j^\star\right), \quad i = 1, \dots, N_{\mathrm{dof}} \\ x_i &= x_i^\star - D_i^{-1} \sum_{j > i} \mathsf{w}_j \, x_j, \quad i = N_{\mathrm{dof}}, \dots, 1 \end{cases}$$

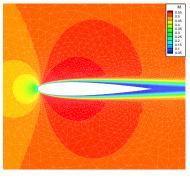
LAMINAR NACA-0012 $M = 0.5, \alpha = 0, Re = 5000$



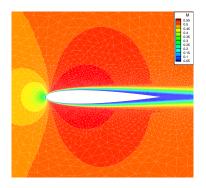
- 4216 P2 elements (8564 DOFs)
- Linear scheme with ZZ-SPR
- Residual down to zero machine



LAMINAR NACA-0012 $M = 0.5, \alpha = 0, Re = 5000$

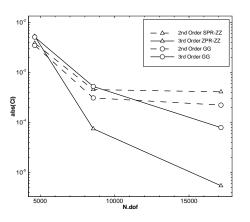


3rd order



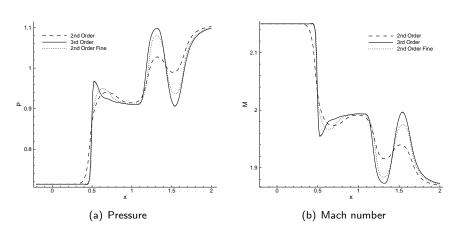
2nd order (Equivalent-DOF)

LAMINAR NACA-0012 $M = 0.5, \alpha = 0, Re = 5000$



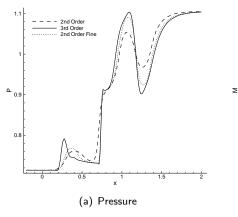
SHOCK-WAVE/LAMINAR BOUNDARY LAYER INTERACTION COMPARISON BETWEEN SECOND AND THIRD ORDER ACCURATE RESULTS

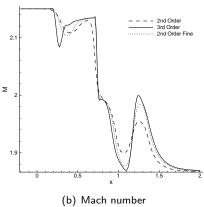
Profiles at y = 0.29



SHOCK-WAVE/LAMINAR BOUNDARY LAYER INTERACTION COMPARISON BETWEEN SECOND AND THIRD ORDER ACCURATE RESULTS

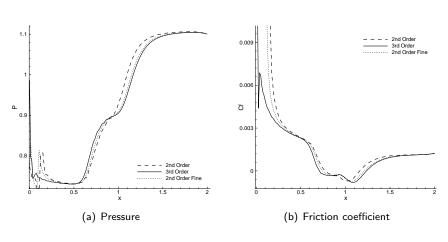
Profiles at y = 0.15





SHOCK-WAVE/LAMINAR BOUNDARY LAYER INTERACTION COMPARISON BETWEEN SECOND AND THIRD ORDER ACCURATE RESULTS

Profiles along the wall



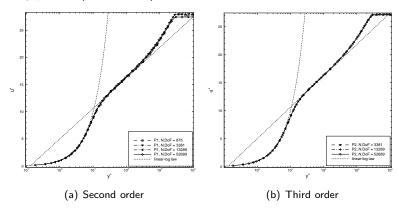
TURBULENT FLOW OVER A FLAT PLATE $M = 0.2, Re_{L=1} = 5 \times 10^6$

- Linear scheme with SPR-ZZ gradient reconstruction
- ullet Jacobian-free with LU-SGS preconditioner (Residual drop $\sim 10^{-10}$)
- Nested grids
- Value of y_1^+ (at x = 0.97)

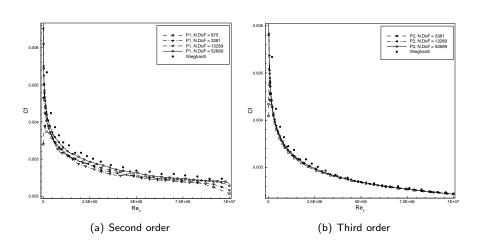
	$Grid\ 35 \times 25$	$Grid\ 69 \times 49$	$Grid\ 137 \times 97$	$Grid\ 273 \times 193$
$y_{1_{\rm P1}}^{+}$	1.500	0.722	0.359	0.182
$y_{1_{\mathrm{P2}}}^+$	0.765	0.372	0.184	-

TURBULENT FLOW OVER A FLAT PLATE $M = 0.2, Re_{L=1} = 5 \times 10^6$

- Linear scheme with SPR-ZZ gradient reconstruction
- Jacobian-free with LU-SGS preconditioner (Residual drop $\sim 10^{-10}$)
- Nested grids
- Velocity profiles (at x = 0.97)



TURBULENT FLOW OVER A FLAT PLATE FRICTION COEFFICIENT ALONG THE PLATE



TURBULENT FLOW OVER A FLAT PLATE DRAG COEFFICIENT VALUES

